LINEAR ALGEBRA AND CALCULUS

I Semester: CSE/IT/AI\&ML/CS/DS/CSIT

Course Code	Category	Hours / Week			Credits	Maximum Marks		
A5BS02	BSC	L	T	P	C	CIE	SEE	Total
		3	1	-	4	30	70	100
Contact Classes: 44	Tutorial Classes: 8	Practical Classes: Nil				Total Classes: 52		

Course Objectives
To learn

1. The concept of differential equations and solve them using appropriate methods.
2. Usage of the appropriate test to find the convergence and divergence of the given series.
3. Concept of Rank of a matrix, Consistency and solving system of linear equations.
4. The Rank and Nullity of vectors.
5. Concept of eigen values, eigen vectors and diagonalization of the matrix.

UNIT-I	ORDINARY DIFFERENTIAL EQUATIONS	Classes: 12

Introduction- Exact and reducible to Exact differential equations-Newton's Law of cooling-Law of Growth and Decay. Linear differential equations of second and higher order with constant coefficients - Non-Homogeneous term of the type $\mathrm{Q}(\mathrm{x})=\mathrm{e}^{\mathrm{ax}}$, Sin $\mathrm{ax}, \operatorname{Cosax}, \mathrm{e}^{\mathrm{ax}} \mathrm{v}(\mathrm{x}), \mathrm{x}^{\mathrm{n} v} \mathrm{v}(\mathrm{x})$ - Method of variation of parameters.

UNIT-III	SEQUENCES AND SERIES	Classes: 08
Basic definitions of Sequences and series - Convergence and divergence -Comparison Test- Ratio Test -Raabe's Test - Cauchy's n		
UNIT root Test -Integral Test - Absolute and Conditional convergence - Power Series.		
THEORY OF MATRICES	Classes:12	

Real matrices: Symmetric-skew-symmetric and orthogonal matrices -Complex matrices: Hermitian, Skew Hermitian and Unitary matrices -Elementary row and column transformations -Elementary matrix-Finding rank of a matrix by reducing to Echelon form and Normal form-Finding the inverse of a matrix using elementary row/column transformations (Gauss-Jordan method)-Consistency of system of linear equations (homogeneous and non-homogeneous) using the rank of a matrix -Solving m n and n n linear system of equations by Gauss Elimination

UNIT-IV	VECTOR SPACES	Classes: 10
The n-dimensional Vectors -Vector space - linear dependence of vectors -Basis and dimensions -linea transformations-range and kernel of a linear map - rank and nullity - rank and nullity theorem - inverse of a linea transformation-composition of linear map- Matrix associated with a linear map.		
UNIT-V	EIGEN VALUES, EIGEN VECTORS AND INNER PRODUCT SPACES	Classes: 10
Eigen values and Eigen vectors of a matrix- Eigenbases - Diagonalization- Inner product space - Norm of a vector - Schwarz's Inequality - Normed vector space - Orthogonal and orthonormal sets - Gram Schmidt orthogonalization process.		
Text Books:		
	Kreyszig, Advanced Engineering Mathematics, $9^{\text {th }}$ Edition, John Wiley \& Sons Grewal, Higher Engineering Mathematics, Khanna publishers, 36th Edition, 2010 rishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, press, Reprint 2005.	6. filiated East -
Reference Books:		
1. G.B.Thomas, calculus and analytical geometry, $9^{\text {th }}$ Edition, Pearson Reprint 2006. 2. N.P Bali and Manish Goyal ,A Text of Engineering Mathematics,Laxmi publications,2008. 3. E.L.Ince, Ordinary differential Equations,Dover publications,1958.		
Web references:		
1. https://www.efunda.com/math/math_home/math.cfm 2. https://www.ocw.mit.edu/resources/\#Mathematics 3. https://www.sosmath.com/ 4. https://www.mathworld.wolfram.com/		
E-Text Books:		
1.https://www.e-booksdirectory.com/details.php?ebook=10166		

MOOCS Course:

1. https://swayam.gov.in/
2. https://onlinecourses.nptel.ac.in/

Course Outcomes

At the end of the course, student will be able to:

1. Identify the different types of differential equations and solve them using appropriate methods
2. Apply the appropriate test to find the convergence and divergence of the given series
3. Solve the system of linear equations using rank of a matrix.
4. Find Rank and Nullity of given vectors.
5. Diagonalize the matrix using eigen values and eigen vectors.
